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Abstract

The performance of ad hoc networks depends on the cooperative and trust nature of the distributed

nodes. To enhance security in ad hoc networks, it is important to evaluate the trustworthiness of other

nodes without centralized authorities. In this paper, we present an information theoretic framework to

quantitatively measure trust and model trust propagation in ad hoc networks. In the proposed information

theoretic framework, the trust is a measure of uncertainty with its value represented by entropy. We develop

four Axioms that address the basic understating of trust and rules for trust propagation. Based on these

Axioms, we present two trust models: entropy-based model and probability-based model, which satisfy all

the Axioms. Techniques of trust establishment and trust update are presented to obtain trust values from

observations. The proposed trust evaluation method and trust models are employed in ad hoc networks for

secure ad hoc routing and malicious node detection. A distributed scheme is designed to acquire, maintain,

and update trust records associated with the behaviors of nodes’ forwarding packets and the behaviors of

making recommendations of other nodes. Simulations show that the proposed framework can significantly

improve the network throughput as well as effectively detect malicious behaviors in ad hoc networks.

This work was supported in part by the Army Research Office under Award No. DAAD19-01-1-0494 and by NSF ADVANCE
program at the University of Rhode Island.
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I. I NTRODUCTION

An ad hoc network is a group of mobile nodes without requiring a centralized administration

or a fixed network infrastructure. Due to their distributed nature, ad hoc networks are vulnerable

to various attacks [1]–[5]. One strategy to improve security of ad hoc networks is to develop

mechanisms that allow a node to evaluate trustworthiness of other nodes. Such mechanisms not

only help in malicious node detection, but also improve network performances because honest nodes

can avoid working with less trustworthy nodes. The focus of this paper is to develop a framework

that defines trust metrics using information theory and develops trust models of trust propagation

in ad hoc networks. The proposed theoretical models are then applied to improve the performance

of ad hoc network routing schemes and to perform malicious node detection.

The problem of defining trust metrics and trust relationship has been extensively studies for

public key authentication [6]–[10], electronics commerce [11], as well as in P2P Networks [12],

[13]. In these schemes, trust is evaluated in very different ways. Some schemes employ linguistic

description of trust relationship, such as in PGP [7], [14], PolicyMaker trust management system

in [15], distributed trust model in [16], trust policy language in [17], and SPKI/SDSI public-key

infrastructure [18]. Based on linguistic descriptions of the trust metrics, decisions can be made

based on linguistic trust policies or fuzzy logic [11]. In some other schemes, discrete or continuous

numerical values are assigned to measure the level of trust [8], [9], [16]. For example, in [8], an

entity’s opinion about the trustworthiness of a certificate is described by a continuous value in

[0, 1]. In [9], a triplet in [0, 1]3 is assigned to measure the trustworthiness where the elements in the

triplet represent believe, disbelief, and uncertainty, respectively. In [16], discrete integer numbers

are used.

Before we can compare different trust evaluation methods or discuss trust models for ad hoc

networks, a fundamental question needs to be answered first. What is the physical meaning of

trust? The answer to this question is the critical link between observations (trust evidence) and the

metrics that evaluate trustworthiness. In ad hoc networks, trust relationship can be established in

two ways. The first way is through direct observations of other nodes’ behavior, such as dropping

packets etc. The second way is through recommendations from other nodes. Without clarifying the
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meaning of trust, trustworthiness cannot be accurately determined from the observations, and the

calculation/policies/rules that govern trust propagation cannot be justified.

Previous work on trust management in ad hoc networks focuses on the trustworthiness evaluation

process after initial trust relationship has been established. They do not, however, address how to

obtain initial trust relationship partially because the meaning of the trust metrics is not clearly

defined. We approach the trust evaluation problem from a definition of trust given by Diego

Gambetta in [19]. It states that trust is a level of likelihood with which an agent will perform

a particular action before such action can be monitored and in a context in which it affects our own

actions. It is clear that trust relationship involves two entities and a specific action. The concept

of trust exists because we are not sure whether the agent will perform the action or not in some

circumstances.

In the proposed information theoretic framework of trust modeling and evaluation, trust is a

measure of uncertainty, as such trust values can be measured by entropy. From this understanding

of trust, we developed axioms that address the basic rules for establishing trust through a third

party (concatenation propagation) and through recommendations from multiple sources (multipath

propagation) in ad hoc networks. Based on these axioms, we develop techniques that calculate

trust values from observations and design two models that address the concatenation and multipath

trust propagation problems in ad hoc networks. The proposed models are applied to improve the

performance and security of ad hoc routing protocols. In particular, we investigate trust relationship

associated with packet forwarding as well as making recommendations. We develop a distributed

scheme to build, maintain, and update trust records in ad hoc networks. Trust records are used to

assist route selection and to perform malicious node detection.

Simulations are performed to evaluate the effectiveness of the proposed models in real ad hoc

networks. For malicious node detection, the proposed scheme can let individual user to obtain the

trust values of forwarding packets and making recommendations in a distributed way. The malicious

nodes can be detected and their types can also be identified. The proposed scheme can also track

the dynamics of the networks adaptively. Compared with a base line scheme without trust models,

the proposed scheme can select the route with higher recommended qualities so that the packet
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dropping rates are greatly reduced. To reduce the network throughput, it takes much more number

of malicious nodes for the proposed scheme than for the base line scheme.

The rest of the paper is organized as follows. The understanding of trust and basic axioms

are presented in Section II. Section III describes entropy-based and probability-based trust models

and proves that our models satisfy all Axioms. In Section IV, we investigate how to establish

trust relationship based on observations. In Section V, the proposed models are applied in ad hoc

networks to assist route selection in on-demand routing protocols and to perform malicious node

detection. Simulation results are shown in Section VI. Conclusions are drawn in Section VII.

II. BASIC AXIOMS

In this section, we will explain the meaning of trust and present four axioms for establishment of

trust relationship. In this work, we relay trust as a level of uncertainty and the basic understanding

of trust is summarized as follows.

1) Trust is a relationship established between two entities for a specific action. In particular, one

entity trusts the other entity to perform anaction. In this work, the first entity is called

the subject, the second entity is called theagent. We introduce the notation{subject :

agent, action} to describe a trust relationship.

2) Trust is a function of uncertainty. In particular, if the subject believes that the agent will

perform the action for sure, the subject fully “trusts” the agent to perform the action and

there is no uncertainty; if the subject believes that the agent will not perform the action for

sure, the subject “trusts” the agent not to perform the action, and there is no uncertainty

either; if the subject does not have any idea of whether the agent will perform the action

or not, the subject does not have trust in the agent. In this case, the subject has the highest

uncertainty.

3) The level of trust can be measured by a continuous real number, referred to as thetrust value.

Trust value should represent uncertainty.

4) The subjects may have different trust values with the same agent for the same action. Trust

is not necessarily symmetric. The fact thatA trustsB does not necessarily means thatB also

trustsA, whereA andB are two entities.
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Based on our understanding of trust, we further developed basic axioms for establishing trust re-

lationship through either direct interactions, or through recommendations without direct interactions

between the agents and the subjects.

Axiom 1: Uncertainty is a measure of trust

The concept of trust is the certainty of the subject about whether or not the agent will perform

an action. LetT{subject : agent, action} denote the trust value of the trust relationship{subject :

agent, action}, andP{subject : agent, action} denote the probability that the agent will perform

the action in the subject’s point of view. Information theory states that entropy is a nature measure

for uncertainty [20]. Thus, we define the entropy-based trust value as:

T{subject : agent, action} =

{
1−H(p), for 0.5 ≤ p ≤ 1;
H(p)− 1, for 0 ≤ p < 0.5,

(1)

where H(p) = −p log2(p) − (1 − p) log2(1 − p) and p = P{subject : agent, action}. In this

work, the trust value is a continuous real number in [-1,1]. This definition satisfies the following

properties. Whenp = 1, the subject trusts the agent the most and the trust value is1. Whenp = 0,

the subject distrusts the agent the most and the trust value is−1. Whenp = 0.5, the subject has

no trust in the agent and the trust value is0. In general, trust value is negative for0 ≤ p < 0.5

and positive for0.5 < p ≤ 1. Trust value is an increasing function withp. It is noted that (1) is a

one-to-one mapping betweenT{subject : agent, action} and P{subject : agent, action}. In the

sequel, we use both values in the description of trust relationship.

Axiom 2: Concatenation propagation of trust does not increase trust

When the subject establishes a trust relationship with the agent through the recommendation

from a third party, the trust value between the subject and the agent should not be more than

the trust value between the subject and the recommender as well as the trust value between the

recommender and the agent. Axiom 2 states that uncertainty increases through propagation.

The trust relationship can be represented by a directional graph shown in Figure 1, where the

weight of the edge is the trust value. The style of the line represents the type of the action: dashed

lines represent making recommendations and solid lines represent performing the action. When

relationship{A : B, actionr} and{B : C, action} are available, trust relationship{A : C, action}
can be established if the following two conditions are satisfied.
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1. The actionr is to make recommendation of other nodes about performing theaction.

2. The trust value of{A : B, actionr} is positive.

The first condition is necessary because the entities who performs the action do not necessarily

make correct recommendations [16]. The second condition states that the recommendations from

untruthful entities should not be used. The second condition makes the trust propagation in dis-

tributed networks resilient to malicious entities who can manipulate their recommendations for

causing maximum damage. It is noted that the second condition is not necessary in some other

situations where the malicious nodes’ behavior of making recommendations is predictable.

The mathematical representation of Axiom 2 is

|TAC | ≤ min(|RAB|, |TBC |), (2)

whereTAC = T{A : C, action}, RAB = T{A : B, actionr} and TBC = T{B : C, action}. This

is similar to information processing in information theory: the information cannot be increased via

propagation. In our case, the trust from others’ recommendations is no more than the recommenders’

trust and the trust to the recommenders.

Axiom 3: Multipath propagation of trust does not reduce trust

If the subject receives the same recommendations for the agents from multiple sources, the

trust value should be no less than that in the case where the subject receives less number of

recommendations.

In particular, as illustrated in Figure 2,A establishes trust withC ′ through one concatenation

path, andA establishes trust withC through two same trust paths. LetTAC = T{A : C, action}
andTAC′ = T{A : C ′, action}. The mathematical representation of Axiom 3 is

TAC ≥ TAC′ ≥ 0, for R1 > 0 andT2 ≥ 0;

TAC ≤ TAC′ ≤ 0, for R1 > 0 andT2 < 0,

where R1 = T{A : B, making recommendation} and T2 = T{B : C, action}. Axiom 3 states

that multipath recommendations will not increase uncertainty. Notice that Axiom 3 holds only if

multiple sources generate the same recommendations. This is because the collective combination of

different recommendations is a problem in nature that can generate different trust values according

to different trust models.
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Axiom 4: Trust based on multiple recommendations from a single source should not be higher

than that from independent sources

When the trust relationship is established jointly through concatenation and multipath trust

propagation, it is possible to have multiple recommendations from a single source, as shown in

Figure 3 (a). Since the recommendations from a single source are highly correlated, the trust built on

those correlated recommendations should not be higher than the trust built upon recommendations

from independent sources. In particular, letTAC′ = T{A : C ′, action} denote the trust value

established in Figure 3 (a), andTAC = T{A : C, action} denote the trust value established in

Figure 3 (b). The Axiom 4 says that

TAC ≥ TAC′ ≥ 0, if TAC′ ≥ 0;

TAC ≤ TAC′ ≤ 0, if TAC′ < 0,

whereR1, R2, andR3 are all positive. The physical meaning of this Axiom is that the recommenda-

tions from independent sources can reduce uncertainty more effectively than the recommendations

from correlated sources.

As a summary, the above four basic Axioms address different aspects of trust relationship.

Axiom 1 states the meaning of trust. Axiom 2 states the rule for concatenation trust propagation.

Axiom 3 describes the rule for multipath trust propagation. Axiom 4 addresses correlation of

recommendations.

III. T RUST MODELS

The methods for calculating trust via concatenation and multipath propagation are referred to as

trust models. In this section, we introduce entropy-based and probability-based trust models and

prove that they satisfy all Axioms.

A. Entropy-based Trust Model

In this model, the trust propagations are calculated directly from trust values defined in (1).

For concatenation trust propagation shown in Figure 1, nodeB observes the behavior of nodeC

and makes recommendation to nodeA as TBC = {B : C, action}. Node A trusts nodeB with

T{A : B, making recommendation} = RAB. The question is how much nodeA should trust node

C to perform the action. To satisfy Axiom 2, one way to calculateTABC = T{A : C, action} is
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TABC = RABTBC . (3)

Note that if nodeB has no idea about nodeC (i.e. TBC = 0) or if nodeA has no idea about node

B (i.e. RAB = 0), the trust betweenA andC is zero, i.e.,TABC = 0.

For multipath trust propagation, letRAB = T{A : B, making recommendation}, TBC = T{B :

C, action}, RAD = T{A : D, making recommendation}, TDC = T{D : C, action}. Thus,A can

establish trust toC through two paths:A−B−C andA−D−C. To combine the trust established

through different paths, we propose to use maximal ratio combining as:

T{A : C, action} = w1(RABTBC) + w2(RADTDC), (4)

where
w1 =

RAB

RAB + RAD

, and w2 =
RAD

RAB + RAD

. (5)

In this model, if any path has the trust value0, this path will not affect the final result. It is noted

that the weight factors in our model are based on recommendation trustRAB andRAD.

Finally, we prove that (3) and (4) satisfy Axioms. SinceT ∈ [−1, 1], the multiplication in (3) will

make the absolute value ofT{A : C, action} smaller or equal to|T{A : B, making recommendation}|
and |T{B : C, action}|. Thus, Axiom 2 is satisfied. When applying (3) and (4) to the special cases

illustrated in Figure 2 (the third Axiom), we obtainTAC = R1T2 andTAC′ = (R1)2T2+(R1)2T2

R1+R1
= TAC .

Thus, Axiom 3 is satisfied with equality. When applying the model to the cases in Figure 3, we

can prove thatTAC = TAC′ =
R1(R2

2T4+R2
3T5)

R2+R3
. Thus, Axiom 4 is satisfied with equality.

B. Probability-based Model

In the second model, we calculate concatenation and multipath trust propagation using the

probability values of the trust relationship. Then, the probability values can be easily transferred

back to trust values using (1).

For the concatenation in Figure 1, letpAB denote theP{A : B, make recommendation}, pBC

denoteP{B : C, action} andpABC denoteP{A : C, action}. We also definep′B as the probability

thatB will make correct recommendations,p′C|B=1 as the probability thatC will perform the action

if B makes correct recommendation, andp′C|B=0 as the probability thatC will perform the action

if B does not make correct recommendation. Then,A can calculatepABC as:

pABC = p′B · p′C|B=1 + (1− p′B) · p′C|B=0. (6)
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AlthoughA does not knowp′B, p′C|B=1 andp′C|B=0, it is reasonable forA to assume thatp′B = pAB

andp′C|B=1 = pBC . Therefore, (6) becomes

pABC = pAB · pBC + (1− pAB) · p′C|B=0. (7)

From Axiom 2, it is easy to see thatTABC should be0 whenTAB is 0. That is,pABC should be0.5

whenpAB is 0.5. By usingpAB = 0.5 andpABC = 0.5 in (7), we can show thatp′C|B=0 = (1−pBC).

Therefore, we calculatepABC as

pABC = pABpBC + (1− pAB)(1− pBC). (8)

It worthy to mention that the above propagation model can also be viewed as binary symmetry

channel (BSC) model [20]. The physical meaning of BSC is as follows. When nodeB claims 1,

nodeA would think that the probability that1 really happens isp and0 happens with probability

1− p. The value ofp is related with the uncertainty associated with the trust relationship between

A andB. Similarly, when nodeB claims0, A would think that0 happens with probabilityp and1

happens with probability1−p. The concatenation of two BSC models also generate the probability

expression in (8).

For the multipath case, as shown in Figure 2, we obtain the probability valuepABC through

pathA−B − C andpADC through pathA−D − C using (8). The question is how to obtain the

overall trustpAC = P{A : C, action} between nodeA and nodeC. This problem has similarity

as the data fusion problem where observations from different sensors are combined. Thus, we use

the data fusion model [21] with the assumption that the recommendations are independent. So the

probability pAC can be calculated as follows:
pAC

1− pAC

=
pABCpADC

(1− pABC)(1− pADC)
. (9)

Note that in this model, if one path has probability value of0.5 (i.e. no information), this path does

not affect the final result of probability.

Next we show that the probability-based models satisfy the Axioms. For Axiom 2, it can be

easily shown thatH(pABC) ≥ H(pBC) andH(pABC) ≥ H(pAB) with equality hold if and only if

pAB = 1 andpBC = 1, respectively. Thus, Axiom 2 holds. For Axiom 3, if bothpABC andpADC

are no less than0.5, from (9), pAC must be larger than bothpABC and pADC . If both pABC and

pADC are smaller than0.5, pAC must be smaller than bothpABC and pADC . So Axiom 3 holds.
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From (8) and (9), we can prove that this model also satisfies Axiom 4 and equality is achieved

when any link has trust value of0.

IV. T RUST ESTABLISHMENT BASED ON OBSERVATIONS

The problem we address in this section is to obtain the trust value from observations. Assume that

A wants to establish the trust relationship with X as{A : X, act} based onA’s previous observation

aboutX. One typical type of observation is as follows. NodeA observed thatX performed the

action k times upon the request of performing the actionN times. For example,A askedX to

forward N packets, andX in fact forwardedk packets. For this type of observation, we define

random variablesV (i) andn(N) as:

V (i) : V (i) = 1 means thatX performs the action at theith trial;

n(N) =
N∑

i=1

V (i) : the number of actions performed by X out of totallyN trials;

We assume thatX ’s behaviors in the pastN trials and in the future(N + 1)th trial are governed

by the same Bernoulli distribution as

Pr(V (i) = 1|θ) = θ; Pr(V (i) = 0|θ) = 1− θ; for i = 1, 2, · · · , N + 1, (10)

where θ is the unknown parameter for the probability ofX performing the action at each trial.

Here,Pr(·) denotes the probability. We assume thatV (i) are independent for differenti’s. Then

the distribution to observen(N) = k follows Binomial distribution

Pr(n(N) = k|θ) =

(
N

k

)
θk(1− θ)N−k. (11)

The issue we would like to address is to estimate the probabilityPr(V (N +1) = 1), given the fact

that k actions have been performed out ofN trials. Then, we can calculate the trust value using

(1). There are two possible approaches.

Approach 1: Estimateθ given the fact thatk actions have been performed out ofN trials.

It is well known that the minimum-variance unbiased estimator [22] forθ is θ̂ = k/N , whereθ̂

is the estimated value ofθ. Then,

Pr(V (N + 1)) = θ̂ = k/N. (12)

This approach is straightforward, and does not require the distribution ofθ, i.e. f(θ). However,

it does not accurately capture the “uncertainty” ofV (N + 1). To see this, let one observation be

{k = 2, N = 3} and another observation be{k = 2000, N = 3000}. Obviously,A, who estimates
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Pr(V (N + 1)) = 2/3 in both cases by using (12), should be more certain about its result in

the second case than that in the first case. Thus, there should be less uncertainty in the second

observation than in the first observation.

Approach 2: EstimatePr(V (N + 1) = 1|n(N) = k) by Bayesian approach.

From Bayesian equation, we have

Pr(V (N + 1) = 1|n(N) = k) =
Pr(V (N + 1) = 1, n(N) = k)

Pr(n(N) = k)
(13)

where

Pr(n(N) = k) =
∫ 1

0
Pr(n(N) = k|θ)f(θ)dθ. (14)

Pr(V (N + 1) = 1, n(N) = k) =
∫ 1

0
Pr(V (N + 1) = 1, n(N) = k|θ) (15)

=
∫ 1

0
Pr(V (N + 1) = 1|θ) · Pr(n(N) = k|θ)f(θ)dθ (16)

=
∫ 1

0
θ · Pr(n(N) = k|θ)f(θ)dθ. (17)

The deduction from (15) to (16) is becauseV (N + 1) and n(N) are independent givenθ for

Binomial distribution in (11). Since there is no prior information, we assume thatθ is uniformly

distributed between between 0 and 1, i.e.f(θ) = 1, for θ ∈ [0, 1]. Then, using (11) we have

Pr(V (N + 1) = 1|n(N) = k) =

∫ 1
0 θ × Pr(n(N) = k|θ)f(θ)dθ
∫ 1
0 Pr(n(N) = k|θ)f(θ)dθ

=
k + 1

N + 2
. (18)

The second approach captures the uncertainty of theV (N +1) given the observation. For example,

the case withk = 2000 andN = 3000 will generate trust value larger than that in the case withk = 2

andN = 3. Moreover, when no observations are made, i.e.k = 0, N = 0, the probability value is

1
2

and the trust value is 0. Clearly, if the ratio betweenk andN is fixed, the uncertainty is less for

largerN values, which corresponds to more observations. Compared with Approach 1, Approach

2 has the advantage of capture the uncertainty more accurately for small values ofk and N . In

this work, we adopt Approach 2 and calculate the trust value asT (Pr(V (N + 1) = 1|n(N) = k)),

whereT (·) is defined in (1).

In practice, nodeA often makes observations at different times. Lettj denote the time whenA

make observations of nodeX, wherej = 1, 2, · · · , I. At time tj, nodeA observes that nodeX

performs the actionkj times upon the request of performing the actionNi times. We propose to

calculate the trust value as follows:
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P{A : X, action} =
1 +

∑I
j=1 βtc−tjkj

2 +
∑I

j=1 βtc−tjNj

, (19)

wheretc represent the current time when this calculation is performed. We introduce0 ≤ β ≤ 1

as the forgetting factor, which describes that the observation made long times ago should carry

less importance than the observation made more recently. The value ofβ depends on how fast the

behavior of agents changes. When the agents’ behaviors change fast, the observations made long

times ago is not very useful for predicting the agents’ future behaviors. In this case,β should be

a small value, and vice versa. It is noted that when all observations are made long times ago, i.e.

tc À tI , P{A : X, action} approaches 0.5 and the trust value approaches to0. Utilization of the

forgetting factor provides a way to capture dynamic changes in the agents’ behavior.

V. SECURITY IN AD HOC NETWORK ROUTING

Securing routing protocols is a fundamental challenge for ad hoc network security [3]–[5]. Cur-

rently, most schemes that aim to secure ad hoc routing protocols focus on preventing attackers from

entering the network through secure key distribution/authentication and secure neighbor discovery,

such as [4], [23]. Those schemes, however, are not effective in situations where malicious nodes have

gained access to the network, or some nodes in the network have been compromised. Therefore, it

is important to develop mechanisms to monitor route disruption in ad hoc networks and adjust the

route selection dynamically. In this section, we use the proposed trust models to improve ad hoc

routing protocols and discuss their potential usage for malicious node detection.

In particular, for ad hoc routing, we investigate the trust value associated with two actions:

forwarding packets and making recommendations. Briefly speaking, each node maintains its trust

record associated with these two actions. When a node (source) wants to establish a route to the

other node (destination), the source first tries to find multiple routes to the destination. Then the

source tries to find the packet-forwarding trustworthiness of the nodes on the routes from its own

trust record or through requesting recommendations. Finally the source selects the trustworthy

route to transmit data. After the transmission, the source node updates the trust records based on

its observation of route quality. The trust records can also be used for malicious node detection.

All above should be achieved in a distributed manner.

In the rest of the section, we first address a procedure for obtaining trust recommendations in ad
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hoc networks without establishing routes between the source node and the recommenders. Then, we

present how to calculate and update the packet-forwarding trust and recommendation trust based on

the observations. Finally, the complete scheme is described with a briefly discussion on malicious

node detection and route selection.

A. Obtaining Trust Recommendations

Requiring trust recommendation in ad hoc networks often occurs in the circumstance where

communication channels between arbitrary entities are not available. In this section, we will discuss

the procedures for requesting trust recommendations and responding to such requests in ad hoc

networks.

For requesting trust recommendations, we assume that nodeA wants to establish trust relation-

ships with a set of nodesB = {B1, B2, · · ·} about actionact, and A does not have valid trust

record with{Bi, ∀i}. These trust relationships, denoted by{A : Bi, act}, ∀i, can be established

through recommendations from other nodes.

Node A first checks its trust record and selects a set of nodes, denoted byẐ, that have the

recommendation trust values larger than a threshold. AlthoughA only needs recommendations

from Ẑ to calculate trust values ofB associated withact, A may ask for recommendations from

a larger set of nodes, denoted byZ, for two reasons. First, nodeA does not necessarily want

to reveal the information about whom it trusts because the malicious nodes may take advantage

of this information. Second, if nodeA establishes trust withB through direct interaction later,

nodeA can use the recommendations it collects to update the recommendation trust of the nodes

in Z. This is an important way to establish or update recommendation trust. Thus,Z should

contain not only the nodes in̂Z, but also the nodes with whichA wants to update/establish

recommendation trust relationship. Next, nodeA sends a trust recommendation request (TRR)

message to its neighbors that in nodeA’s transmission range. The TRR message should contain the

IDs of nodes in setB and in setZ. In order to reduce overhead, the TRR message also contains the

maximal concatenation levels, denoted by Maxtransit, and time-to-live (TTL). Each time a node

asks further trust recommendations, the value of Maxtransit is reduced by one. NodeA waits time

TTL for replies. In addition,transmit-path is used to record delivery history of the TRR message
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such that the nodes who receive the TRR message can send their recommendations back toA.

Procedure 1 describes this scheme in details.

Upon receiving an unexpired TRR message, the nodes that are not inZ simply forward the TRR

message to their neighbors; the nodes inZ either send trust values back toA or ask their trusted

recommenders for further recommendations. In addition, the nodes inZ may not respond to the

TRR message if they do not want to reveal their trust records toA when, for example, they believe

that A is malicious. In particular, suppose nodeX is in Z. WhenX receives an unexpired TRR

message, ifX has the trust relationship with some of{Bi}′s, X sends its recommendation back to

A. If X does not have trust relationship with some of{Bi}′s, X generates a new TRR message by

replacingZ with the recommenders trusted byX and reducing the value of Maxtransit by one. If

Max transit> 0, the revised TRR message is sent toX ’s neighbors.X also sendsA corresponding

recommendation trust values needed forA to establish trust propagation paths. If the original TRR

message has not expired,X will also forward the original TRR message to its neighbors. By doing

so, the trust concatenations can be constructed. The detailed schemes of processing TRR messages

is described in Procedure 2.

The major overhead of requesting trust recommendations comes from transmitting TRR messages

in the network. Letc denote the overhead of transmitting one TRR messages before it expires, and

np denote the number of recommenders selected by each node. The overhead of transmitting TRR

messages is approximatelyc
∑Max transit

k=0 np
k, which increases exponentially with Maxtransit. In

practice, Maxtransit should be a small number for two reasons. First, since uncertainty increases

along the trust transit path, if a trust relationship is established through many hops of trust propa-

gation, the trust value can be very close to0, which is not very useful anyway. The second reason

is to reduce overhead that increases exponentially with Maxtransit.

B. Calculation/Update of Action Trust and Recommendation Trust in Ad hoc Networks

Next, we present the procedure of utilizing Approach 2 (in Section IV) to calculate and update

trust records in ad hoc networks. Assume that nodeA would like to ask nodeC to transmit packets,

while A does not have trust relationship with nodeC.

Before the transmission
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• NodeA receives the recommendation from nodeB, and nodeB says thatT{B : C, forward packet} =

TBC .

• Previously, nodeB has made recommendation toA for Nr times. Among those recom-

mendations,A believes thatB has madekr “good recommendations”. The definition of

“good recommendations” is application dependent. NodeA calculates the recommendation

trust of B based onB’s previous recommendations using equation (18). That is,P{A :

B, making recommendation} = kr+1
Nr+2

or T{A : B, making recommendation} = T ( kr+1
Nr+2

).

• Then,A calculates the trust inC about packet forwarding through the concatenation propaga-

tion using equation (3) or (8). LetT r
AC denote the calculated{A : C, forward packet} before

the transmission.

After the transmission

• Node A observes thatC forwards k packets out of totalN packets.A calculatesT{A :

C, forward packet} using equation (18) or (19). LetT a
AC denote the current trust value of

{A : C, forward packet}, which is established/updated after the transmission.

• Then, nodeA updates the recommendation trust of nodeB as follows. If |T a
AC − T r

AC | ≤
threshold, nodeA believes thatB has made good recommendation, and increases the value of

kr by 1 and increases the value ofNr by 1. If |T a
AC − T r

AC | > threshold, nodeA believes that

B has made bad recommendation, and increases the value ofNr by 1 while maintaining the

value ofkr. A can update the recommendation trust based on the new values ofkr andNr.

C. Proposed Scheme

In this section, we describe the details of the ad hoc routing scheme using the proposed trust

models. First of all, each node in ad hoc network maintains atrust record, a recommendation buffer,

and anobservation buffer, which are described as follows.

• The entries of the trust record have the format of

{subject, agent, action, trust value, probability value, test}, (20)

which describes the trust relationship{subject : agent, action} = trust value established at

time test, wheretrust value = T (probability value). In the trust record of nodeA, thesubject

field is alwaysA because the trust record is established only through direction interaction.
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• The entries of the recommendation buffer also have the same format as that in (20), but different

meanings. The recommendation buffer ofA describes thatA receives the recommendation at

time test from the subject, in which the subject claimed T{subject : agent, action} =

trust value. The subject can only make recommendation based on its own trust record (i.e.

directly interaction with theagent). In addition, when making recommendations, thesubject

modifies trust values based on the current time and the time when its interaction with the

agent took place.

• Since it is not necessary to update the trust values immediately after an observation is made,

each node maintains an observation buffer that contains the new observations. After an obser-

vation is used to establish/update trust relationship, it is removed from the buffer.

The flow chart of the proposed scheme is shown in Figure 4. The major blocks are explained in

details as follows.

• Route discovery: Before nodeA can communicate with nodeD in ad hoc networks, routes

betweenA andD should be established. Thus,A performs on-demand routing to find several

possible routes toD. Let {Si} denote the nodes on all possible routes.

• Node A first checks its own trust record. IfA cannot find a trust record forSi or the trust

value for Si is below a certain threshold, nodeA puts Si in set B. Then, nodeA performs

Procedure 1 to request recommendations forB.

• Node A puts the received recommendations in the recommendation buffer, and constructs a

trust propagation graph based on its own trust records and the recommendation buffer. Based

on the trust graph, nodeA calculates the trust values for the nodes inB.

• Among all possible routes, nodeA would like to choose a route that has the best quality. Let

{ni, ∀i} represent the nodes on a particular routeR. Let pi representP{A : ni, forward packet},
whereA is the source. The quality of routeR is calculated as

∏
i pi.

• During the transmission, nodeA makes the observations associated whether nodes forward

packets and whether the nodes’ true behaviors agree with the recommendations thatA obtained

from other nodes. All these observations are put into the observation buffer.

• Node A performs malicious nodes detection periodically to update its own list of malicious



16

nodes. In this work, we perform malicious node detection based on the trust value of two

actions: forwarding packet and making recommendations. LetP{A : Xi, forward packet} =

P f
i andP{A : Xi, make recommendations} = P r

i , ∀i. On a 2D plot, each node is represented

by a dot located at[P f
i , P r

i ]. With enough observations, good nodes and malicious nodes should

form clusters on this 2D plot, which can be used to separate good and malicious nodes. Such

2D plots will be shown in the simulation section.

• NodeA monitors packet drop ratio of the entire route. When the packet drop ratio becomes

smaller than a threshold,A will initiate a new round of route discovery. Before nodeA selects

the new route, trust records are updated. Therefore, nodeA learns from previous experiences.

If the transmission is finished, nodeA updates its trust record.

VI. SIMULATIONS

A. Malicious Node Detection

We first investigate the establishment of trust record in a simple system that reveals important

insights of trust propagation and the effects of various attack models. The system is setup as follows.

In each time interval, which isn time units long, each node selects another node to transmit packets.

Assume that nodeA selects nodeX. If the trust value{A : X, forward packet} is smaller than

a threshold, nodeA will ask for recommendations about nodeX using the procedures described

in Section V-A. Then, nodeA asksX to forward n packets and the data rate is1 packet per

time unit. In this simple system, we assume that nodeA can observe how many packets thatX

has forwarded. This assumption will be explained in the next paragraph. Next, nodeA updates

its trust record using the procedure in Section V-B. In this system, if a malicious node decides to

attack nodeA, it drops the packets from nodeA with packet drop ratio randomly selected between

0 and 40%, and/or sends recommendations to nodeA with trust values randomly picked from 0

to 1. Three types of malicious nodes are considered. Type 1 drops packets only, type 2 makes

wrong recommendations only, and type 3 does both. No collusion is considered. For good nodes,

the packet drop ratio is between 90% and 100%, and they make honest recommendations. Other

simulation parameters are Maxtransit= 1, Z is chosen as all nodes, and the forgetting factor is

β = 0.999.
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In practice, ifX is A’s neighbors,A can monitorX ’s transmission [3] and observe the number

of packets forwarded byX. If X is not A’s neighbor,A has to obtain this observation based on

other nodes’ reports. For example, whenA detects abnormal route disruption, nodeA can ask

each node on the path of packet transmission to report the number of packets that they received

from the previous hop and the number of packets that they have forwarded to the next hop. If the

reports are consistent, the source node believes these reports. If the reports are not consistent, the

source can easily identify a small set of nodes containing the lying nodes, as long as the number

of malicious nodes is not very large. The detection of fault reports is easier than the detection of

malicious packet dropping. To avoid complicating this simple system, we have the assumption that

A can observe the number of packets forwarded byX for this set of simulations.

We show three simulation results to demonstrate that distributed users can detect malicious

nodes by using the proposed scheme. The first simulation shows the process for the malicious

node detections. The second simulation shows the records of distributed users. The third simulation

shows that the scheme can track the changes of the malicious behaviors and adaptively update the

trust records.

In the first simulation, we haveN = 100 total number of nodes. Among them, 24 nodes are

malicious. 8 nodes for type 1, type 2, and type 3, respectively. In Figure 5, we show the trust

record of one good node at different times. HereS is the simulation time. We plot the probability

value of forward-packet trust vs. probability value of recommendation trust of all other nodes in

this good node’s trust record. When the number of observations is small, most of the nodes are

with probability of 0.5 in either forward packet trust or recommendation trust. This is because this

node has no experience with many others. With more observations, good nodes form a cluster that

is close to the up-right corner and this cluster becomes tighter and tighter. Three types of malicious

behaviors are clearly shown and can be differentiated. Type 1 nodes locate in the right-lower area,

type 2 nodes locate in the left-up, and type 3 nodes are in the right-lower area.

It is important to point out that bad nodes do not necessarily form prominent clusters. There are

two reasons. First, the trust values of bad nodes are reduced after they perform some malicious

behaviors. With lower trust values, the chance for bad nodes to be on the routes or provide
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recommendations becomes smaller. Thus, good nodes often do not have many bad experiences

with malicious nodes, which is desirable because the damage caused by malicious nodes is limited.

Second, malicious nodes have various behaviors. For example, some nodes may drop all packets,

while others drop small potion of packets passing through them. The malicious behaviors in nature

will not form very tight clusters.

In the second simulation, we have a total of 20 nodes. Among them, 3 nodes are malicious.

Specifically, node 1 drops packets only, node 2 provides bad recommendations only, and node

3 does both. Figure 6 shows the trust of packet forwarding and making recommendations among

distributed users for two different cases. In the first case, the malicious nodes attack all other nodes.

In the second case, the bad nodes are only malicious to half of the users. In the figure, the element

on theith row andjth column represents the trust of theith user to thejth user. The brighter the

color, the higher the trust. Obviously the trust to the user itself is always 1. From Figure 6 (a),

we can see that user 1, 2, and 3 are clearly differentiated from others. That is, most good nodes

develop low negative trust values for user 1, 2, and 3 according to their malicious behaviors.

In the second case shown in Figure 6 (b), good nodes also develop negative trust values for

malicious nodes. It is important to mention that when the malicious nodes only perform badly for

half of users, the packet-forwarding trust values are similar as those in the first case. However,

they can hurt others recommendation trusts. As shown in Figure 6 (b), the node 1-10 think node

11-20 do not give good recommendations and vise versa. We can make three points here. First, the

recommendation trusts of malicious nodes are still significantly lower than that of good nodes. We

can still perform malicious node detection. Second, node 1-10 will not give higher weights to the

recommendations from node 11-20, which has positive effects on improving network throughput.

Third, if good nodes can share their opinions through broadcasting (which is not discussed in this

paper) , they can easily detect inconsistent behaviors of malicious nodes.

In the third simulation, we have a total of 40 nodes. At the beginning, we have 4 malicious nodes

dropping packets. Every time whenS increases by 3000, 4 more nodes become malicious. Here,

S is the simulation time index. So we have 4, 8, 12, and 16 malicious nodes for the four stages

when S equals to 3000, 6000, 9000, and 12000, respectively. In Figure 7, we show the average
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packet-forward trust among users vs. user index. We highlight the changing of the trusts by drawing

lines connecting the trust values in the current stage and the trust values in the previous stage. We

can see that the four new malicious nodes are detected, and the proposed scheme can adaptively

track network changes.

B. Network Throughput Improvement

We use an event-driven simulator to simulate mobile ad hoc networks. The physical layer assumes

a fixed transmission range model, where two nodes can directly communicate with each other

successfully only if they are in each other’s transmission range. The MAC layer protocol simulates

the IEEE 802.11 Distributed Coordination Function (DCF) [24]. DSR [25] is used as the underlying

routing protocol. We use a rectangular space of size 1000m by 1000m. The total number of nodes

is 50, and the maximum transmission range is 250m. There are 50 traffic pairs randomly generated

for each simulation. For each traffic pair, the packet arrival time is modelled as a Poisson process,

and the average packet inter-arrival time is 1 second. The size of each data packet after encryption

is 512 bytes. Among all the ROUTE REQUESTs with the same ID received by a node A, A will

only broadcast the first request if it is not the destination, and will send back at most 5 ROUTE

REPLYs if it is the destination. The maximum number of hops on a route is restricted to be 10.

In the simulations, each node moves randomly according to the random waypoint model [25]

with a slight modification: a node starts at a random position, waits for a duration called the pause

time that is modeled as a random variable with exponential distribution, then randomly chooses a

new location and moves towards the new location with a velocity uniformly chosen between 0 and

vmax = 10 meters/second. When it arrives at the new location, it waits for another random pause

time and repeats the process. The average pause time is 300 seconds.

We change the total number of malicious nodes from 1 to 11. In this implementation, the

malicious nodes perform gray hole attack, i.e., randomly drop 65-75% packets passing through

them. Three systems are compared: (1) baseline scheme that does not build or utilize trust record;

(2) the system using entropy-based model for trust recommendations; and (3) the system using

probability-based model for trust recommendations. Figure 8 shows the average packet drop ratios

of good nodes. The simulation time is 1000sec. We can see that malicious nodes can significantly
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degrade the performance of the baseline system. Even with 4 attackers (8% of total nodes), the

packet drop ratio can be as high as 25%. Obviously, using the proposed mechanism to build

and utilize trust records can greatly improve the performance. In particular, it takes more than 11

attackers (24% of total nodes) to cause 25% average packet drop ratio. In addition, the performances

of probability-based and entropy-based models are similar. It is important to point out that the results

shown in Figure 8 is for a very short simulation time, where the trust records are built based on

very limited observations. Within such as short simulation time, the good nodes and bad nodes are

not well separated on the 2D trust plots (similar as the up-left plot in Figure 5), and malicious

node detection mechanism is not activated yet. Even under this condition, the proposed scheme

still shows performance gain in Figure 8, which is due to the route selection mechanism based on

the proposed trust models.

VII. C ONCLUSION

In this paper, we present an information theoretic framework for trustworthiness evaluation in

distributed networks. Four axioms are developed to address the meaning of trust and establish

trust relationship through third parties. Based on these axioms, the level of trustworthiness can

be quantitatively determined based on observations and through propagations. Two models that

govern concatenation and multipath propagation of trust are developed. The proposed framework

is suitable for a variety of applications in distributed networks. In this work, we demonstrate the

usage of the proposed models in ad hoc network to assist malicious node detection and route

selection. The simulation results demonstrate that the malicious nodes can be detected and the

types of their malicious behaviors can be identified. In addition, with the trust recommendations

and trust records, the chances of malicious node being on the routes are greatly reduced. As a

result, the improvement in the packet drop ratio is observed. As a summary, this work provides

the theoretical bases of trustworthiness evaluation as well as addresses practical implementations

when applying the theories in ad hoc networks.
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Procedure 1Sending Trust Requesting Algorithm
1. NodeA selects a set of trusted recommendersẐ. Each node in̂Z has recommendation trust value above a certain
threshold.
2. NodeA selects another setZ. Z containsẐ and is often a larger set than̂Z.
3. NodeA sends the following TRR message to its neighbors

{requestID, A,B, act,Z, Max transit, TTL, transmit-path}
4. NodeA waits for recommendation messages until a predetermined time.

Procedure 2NodeX Processing TRR Messages
if (TRR not expired) & (X has not received this TRR before) & (X /∈ Z) then

X forwards the TRR to its neighbors.
end if
if (TRR not expired) & (X has not received this TRR before) & (X ∈ Z) then

for every elementBi ∈ B do
X checks its trust record forBi.
if {X : Bi, act} = TX,Bi is found inX ’s trust record and|TX,Bi | is larger than a threshold,then

X sends the trust valueTX,Bi back toA.
else

X putsBi in a setBx.
end if

end for
if Bx is not empty & Maxtransit> 1, then

X searches its trust record for recommendersẐx = {Zx
k } such that{X : Zx

k , actr} > threshold andZx
k /∈ Z.

If Ẑx is not empty,X selects a set of nodesZx. The setZx containsẐx and is often a larger set than̂Zx.
X generates a new TRR message by making the following changes to the original TRR: (1) replaceZ by Zx;
and (2) reduce Maxtransit by 1.
X sends the new and original TRR messages to its neighbors.
X sends its recommendation trust value ofẐx back toA.

end if
end if
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Fig. 5. Trust Record of a Good Node
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